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Nonlinear-driven instability of dynamical plasma in solids:
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behavior

S.A. Hassana,b, A.R. Vasconcellos, and R. Luzzi

Instituto de F́ısica “Gleb Wataghin”, Universidade Estadual de Campinas, Unicamp 13083-970 Campinas, São Paulo, Brazil

Received 8 July 1998 and Received in final form 6 May 1999

Abstract. We analyze in detail the nonlinear kinetics of a carrier system in a photoinjected plasma in
semiconductors under the action of constant illumination with ultraviolet light. We show that the spatially
homogeneous steady-state becomes unstable, and a charge density wave emerges after a critical intensity of
the incident radiation is achieved. It is shown that this instability can only follow in doped p-type materials.
In bulk systems the critical intensity was found to be too high making the phenomenon not observable
under realistic experimental conditions. However, a more efficient electron excitation can be obtained in
low dimensional p-type systems, like some molecular and biological polymers, where the interaction may
follow by chemical interaction with the medium. We show that for intensities beyond the critical threshold
an increasing number of modes provide further contributions (subharmonics) to the space inhomogeneity.
It is conjectured that this process could lead the system to display chaotic-like behavior.

PACS. 47.20.Hw Morphological instability; phase changes – 47.20.Ky Nonlinearity (including bifurcation
theory)

1 Introduction

The presence of nonlinear terms in the kinetic equations
that govern the evolution of the macroscopic state of open
systems, is known to be a fundamental condition for the
so-called complex behavior to arise. One of the mani-
festations of this behavior is the phenomenon of syner-
getic self-organization in dissipative (open) systems [1].
These systems, when kept under constant excitation lead-
ing to Non-equilibrium steady-state conditions, can dis-
play macroscopic spatial structures. We consider here a
phenomenon of this type. Extensive and comprehensive re-
views on this subject can be found in reference [2]. In this
communication we report an in depth study on the possi-
bility of spatial self-organization of a highly excited elec-
tron system. Theoretical studies have recently suggested
the possibility of emergence of a morphological transition
in carrier systems in bulk matter when under the action
of an external pumping source of energy [3]. In this paper
we focus mainly on the case of a photoinjected plasma
in bulk (three-dimensional) polar semiconductors while
being continuously illuminated with ultraviolet radiation.
We also present some considerations involving the case of
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low-dimensional electron systems like biopolymers under
dark-biochemical excitation.

2 Instability in a photoinjected plasma
in polar semi-conductors

Let us consider a direct-gap, polar semiconductor (GaAs
for instance) with energy gap EG, in contact with a ther-
mal bath at temperature TB. The sample is driven and
maintained far away from equilibrium by pumping energy
with a source of UV-light. We assume that the source ra-
diates in a broad spectrum of energies with a spectral
density, g(~ω), of the form

g(~ω) = g0θ(~ω −Em)θ(EM − ~ω), (1)

where Em and EM are a minimum and a maximum cut-
off in energy, g0 is a constant and ~ω is the photon en-
ergy; θ(x) is the Heaviside step function. Equation (1)
implies in a constant illumination with photons in the en-
ergy interval Em ≤ ~ω ≤ EM, and we consider the case
where Em <EG and EM >EG and therefore electrons in
the valence band are excited to the conduction band. In
this process electron-hole pairs (to be denominated carri-
ers in what follows) with density n(t) (in units of cm−3)
are created. When the source is turned on, a nonequi-
librium carrier distribution is established in the system
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and, after a transient that typically extends in a ten-fold
pioseconds scale [4], a steady-state sets in. Note that only
photons with energies E in the interval EG ≤ E ≤ EM

are absorbed in the sample and then the total intensity
I (in units of erg cm−2s−1) that effectively contributes
to the absorption process is given by I = g0∆E, where
∆E = EM − EG. The steady-state, determined only by
I (once ∆E and TB are kept fixed), is characterized by
a spatial electron density distribution n(r). At low radia-
tion intensities, when the system is in the so-called linear
regime near equilibrium, the homogeneous state (n(r) =
const.) is expected to be stable (predominance of thermal
chaos: collisions, mainly via the long-range Coulomb in-
teraction, rapidly sweep away the inhomogeneities). We
analyze here the conditions under which this state may
become unstable against the emergence of a macroscopic
spatial structure in the carrier system.

The electron system is treated in the electron-hole rep-
resentation. We consider that the total carrier density,
n = V −1

∫
n(r)d3r (V is the volume of the sample), is

high enough for the system to be on the metallic side of the
Mott transition (what typically occurs for densities of the
order or higher than n ∼ 1016 cm−3). Under this condi-
tion the carriers form a double photoinjected plasma, that
is, the gas of excitons is almost completely ionized. The
carrier system relaxes its energy in excess of equilibrium
through mainly two mechanisms: radiative recombination
and interaction with the lattice modes. In polar semicon-
ductors, as a general rule, we can disregard the interac-
tion of the carriers with the acoustic modes and deforma-
tion potential interaction with the optical phonons, only
retaining Fröhlich interaction between carriers and LO-
phonons. Higher order processes such as self-absorption,
non-radiative recombination, Auger effect, etc., are also
neglected since, in the conditions to be analyzed, they
have much smaller contributions than the leading sponta-
neous recombination.

Let us consider the evolution equation of the electron
density, n(r, t), at position r and time t. This quantity is
given by the average, over the nonequilibrium ensemble
which characterizes the dissipative macrostate of the sys-
tem, of the single particle density operator ψ†(r)ψ(r) at
position r, i.e.,

n(r, t) = Tr{ψ†(r)ψ(r)ρ(t)}, (2)

where ρ(t) is the probability distribution operator at time t
corresponding to the nonequilibrium statistical ensemble
formalism to be used, and ψ† and ψ are the usual single-
particle field operators. The statistical operator ρ(t), to be
specified below, is built on the basis of the so-called Non-
Equilibrium Statistical Operator method (NESOM for
short). NESOM provides mechanical-statistical basis for
the construction of ρ(t), the Non-Equilibrium Statistical
Operator. We notice that NESOM is a particular nonequi-
librium ensemble formalism founded on the ideas set forth
by Gibbs and Boltzmann [5,6]. In far-from-equilibrium
systems the method has been successfully applied to sev-
eral experimental situations, especially in the area of pho-
toexcited semiconductors [7], as the one we are consider-
ing here. We will not describe here the method which is

presented in the books in reference [5], and the review ar-
ticles in reference [6]; a description along with applications
to the study of ultrafast relaxation processes in the pho-
toinjected plasma in bulk matter is given in reference [8],
while the case of polymers and quasi-onedimensional elec-
tron systems (quantum wires) is presented in references
[9,10], respectively.

Expressing the field operators ψ†(r) and ψ(r) on the
basis of single-electron creation (annihilation) operators
c†k(ck) and h†−k(h−k) for electrons and holes respectively,
we write equation (2) in the form

n(r, t) =
∑
Q

n(Q, t)e−iQ.r, (3)

where the Fourier transform, n(Q, t), of the carrier density
is given by

n(Q, t) =
∑
k

Tr{c†k+Qckρ(t)}+
∑
k

Tr{h−k−Qh
†
−kρ(t)}.

(4)

Wavevectors Q and k in the sums in equations (3, 4) run
over the Brillouin zone (the spin index has been omit-
ted), and Bloch’s wavefunctions have been approximated
by plane waves. Next we define the variables

ne
k,Q(t) = Tr{c†k+Qckρ(t)}, (5)

nh
k,Q(t) = Tr{h−k−Qh

†
−kρ(t)}, (6)

which are the average values, over the nonequilibrium en-
semble, of the Dirac-Wigner-Landau single-particle dy-
namical operators, in this case for electrons and for holes
respectively, and once the transport equations for ne

k,Q(t)
and nh

k,Q(t) are obtained, the corresponding one for n(r, t)
follows from equations (3, 4).

For the description of the nonequilibrium statisti-
cal thermodynamics of this photoinjected double plasma
(dealt with, we recall, in the single-particle description)
first we take, as basic variables, the total carrier energy,
Ec(t), and electron and hole densities, ne(t) and nh(t),
that is (see Ref. [11])

Ec(t) = Tr{Ĥcρ(t)}, (7)

ne(h)(t) =
1
V

Tr{N̂e(h)ρ(t)}, (8)

where

Ĥc =
∑
k

{
εe
kc
†
kck + εh

kh
†
khk

}
(9)

is the carriers’ Hamiltonian, and

N̂e =
∑
k

c†kck; N̂h =
∑
k

h†khk (10)

are the electron and hole number operator. Second, for
dealing with the local spatial characteristics of the elec-
tron systems, we must also include the variables of equa-
tions (5, 6). In equation (9) εe

k = EG + (~2/2me)k2 and
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εh
k = (~2/2mh)k2 are the band energies of electrons

and holes respectively, in the effective mass approxima-
tion (me(h) denotes the electron (hole) effective mass).

Consequently, according to NESOM, the basic set of
dynamical variables, on which the nonequilibrium distri-
bution depends, consists of{

Ĥc, N̂e, N̂h, c
†
k+Qck, h−k−Qh

†
−k

}
, (11)

with Q 6= 0.
The NESOM-nonequilibrium statistical operator ρ(t)

introduced in equation (2) is a superoperator built in
terms of the basic dynamical variables of equation (11)
which, in Zubarev’s approach [6], is given by

ρ(t) = exp
{
−Ŝ(t, 0) +

∫ t

−∞
eε(t−t)

d
dt′

Ŝ(t′, t′ − t)dt′
}
,

(12)

where

Ŝ(t, 0) = −logρ̄(t, 0) =

φ(t) + βc(t)
[
Ĥc − µe(t)N̂e − µh(t)N̂h

]
+
∑
k,Q

[
F e

kQ(t)c†k+Qck + F h
kQ(t)h−k−Qh

†
−k

]
(13)

is the so-called informational entropy operator [12], and
where βc(t),−µe(t)βc(t),−µh(t)βc(t), F e

kQ(t) and F h
kQ(t)

are the Lagrange multipliers (intensive nonequilibrium
thermodynamic variables) that the method introduces.
The first three ones are those associated to the homo-
geneous variables Ec(t), Ne(t) and Nh(t), and βc is usu-
ally written as βc(t) = 1/kBT

∗
c (t) introducing, in this

way, the so-called quasitemperature T ∗c (t) for the car-
rier system; quantities µe(t) and µh(t) are the so-called
quasi-chemical potentials for electrons and for holes re-
spectively [13]. The other Lagrange multipliers are related
to the Dirac-Wigner-Landau dynamical single-particle op-
erators. In equation (13) ρ̄(t, 0) is the auxiliary statistical
operator

ρ̄(t, 0) = exp
{
Ŝ(t, 0)

}
, (14)

sometimes called the coarse-grained part of the fine-
grained statistical operator of equation (12), or distribu-
tion for a “frozen” instantaneous quasi-equilibrium [6,7],
which has a relevant role in the theory and provides the
foundations for a statistical irreversible thermodynam-
ics [14]. The Lagrange multiplier φ(t) (playing the role
of the logarithm of a nonequilibrium partition function)
ensures the normalization of the statistical operator. The
informational entropy operator in Heisenberg representa-
tion, which appears in equation (12), is given by

Ŝ(t′, t′−t)=exp
{
−1

i~
(t′−t)Ĥ

}
Ŝ(t, 0)exp

{
1
i~

(t′−t)Ĥ
}
.

(15)

The quantity ε (> 0) in equation (12) is an infinitesimal
that goes to zero after the trace operation in the calcu-
lation of averages has been performed. As expected, after
switching the external perturbation off, the statistical op-
erator of equation (12) converges to the grand-canonical
distribution in equilibrium [15].

We derive next the evolution equations for the ba-
sic macrovariables of equations (5–8) resorting to the
NESOM-based nonlinear quantum kinetic theory [6,16],
but restricted to the Markovian approximation (also
dubbed second order approximation in relaxation the-
ory) [17], and which can be considered as a far-reaching
generalization of Mori-Heisenberg-Langevin equations
(see for example Ref. [18]). The transport equations for
Ec(t) and n(t) are given, for example, in reference [11],
and those for ne(h)

k,Q(t) are (see Refs. [10,19])

∂

∂t
ne

k,Q(t) = − 1
i~

(εe
k+Q − εe

k)ne
k,Q(t)

+
1
i~
V(Q)

[
f e
k+Q(t)− f e

k(t)
]
n(Q, t)−Ae

k,Q(t)ne
k,Q(t)

+Ah
k,Q(t)nh

k,Q(t) + Le
k,Q(t) +N e

k,Q(t), (16)

∂

∂t
nh

k,Q(t) =
1
i~

(εh
k+Q − εh

k)nh
k,Q(t)

− 1
i~
V(Q)[fh

k+Q(t)− fh
k (t)]n(Q, t)

−Ah
k,Q(t)ne

k,Q(t) +Ae
k,Q(t)nh

k,Q(t)

+ Lh
k,Q(t) +N h

k,Q(t), (17)

where the quantities f e(h)
k (t) are

f e
k(t) = Tr

{
c†kckρ(t)

}
, (18a)

fh
k(t) = Tr

{
h†khkρ(t)

}
, (18b)

that is, they are the populations in state |k〉 in the
nonequilibrium ensemble. In equations (16, 17) V(Q) is
the matrix element of the Coulomb interaction between
electrons dealt with in RPA (in bulk matter this poten-
tial is V(Q) = 4πe2/V ε0Q

2, where Q ≡ |Q| and ε0 is the
background dielectric constant); N e(h)

k,Q are bilinear con-

tributions in n
e(h)
kQ (t) whose cumbersome expressions we

omit to write down for brevity since they will not be
present in the linear stability analysis to be performed;
terms Le(h)

k,Q(t) are responsible for the electron-LO-phonon
interaction (which are proportional to the square modulus
of the matrix element of Fröhlich potential).

As it can be numerically demonstrated (we used pa-
rameters characteristic of GaAs semiconductor, but this
result is expected to be general for any other direct-gap
polar semiconductor) the contributions L can be disre-
garded (in comparison with the other linear terms in Eqs.
(16, 17)), for wavenumber Q not too close to the zone cen-
ter (in GaAs, for example, neglecting L is quite satisfac-
tory for all Q & 102 cm−1). We shall see, as we proceed,
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that the instability of the homogeneous state (first bifur-
cation) arises for values of Q near the Brillouin wavenum-
ber QB in (GaAs QB ∼ 5 × 107 cm−1) and therefore the
terms Le(h)

k,Q(t) can be, in effect, disregarded. Terms Ae(h)
k,Q

are responsible for the interaction between carriers and
the radiation fields, and are given by

A
e(h)
k,Q(t) = sR(εe

k + εh
k)f e(h)

k (t) + sF
g(~ωk)

(εe
k + εh

k)2

+ (same with k→ k + Q), (19)

where g(~ωk) is the spectral density defined in equation
(1) evaluated at the energy ~ωk = εe

k + εh
k, and sR and sF

are the constants given by

sR =
η∞e2|Pvc|2
~2m2

0c
3

, sF =
2π2~e2|Pvc|2
η∞m2

0c
, (20)

where e is the electron charge, |Pvc|2 the square modulus
of the matrix of the electron linear momentum between
conduction and valence bands states at the zone center,
m0 the electron rest mass, c the speed of light and η∞
the high frequency refraction index. Terms Ae(h)

k,Q(t) are
composed of two contributions, one associated to the re-
combination processes, namely, the first term on the right
hand side of equation (19) plus the corresponding one with
k→ k + Q, and another one associated to the interaction
between carriers and the external radiation field, namely,
the second on the right of equation (19) plus the corre-
sponding one with k→ k + Q.

The homogeneous steady state is characterized by the
Q = 0 Fourier amplitude in equation (3) and null variables
n

e(h)
k,Q (defined in Eqs. (5, 6) for Q 6= 0). We are next going

to analyze a possible instability of the stationary homo-
geneous state against the formation of a spatial pattern,
i.e., when quantities ne(h)

k,Q become different from zero (for
Q 6= 0). For this purpose we consider the stability of the
homogeneous state resorting to a linear stability analysis.
Recalling that in the homogeneous state ne(h)

k,Q = 0, and

then N e(h)
k,Q in equations (16, 17) are null, we test the evo-

lution of the system after we impose an arbitrary small
perturbation of the form

n
e(h)
k,Q(t) = n

e(h)
k,Q(0)expλt, (21)

where λ = γ + iω, and we analyze the sign of γ. At low
radiation intensities γ is negative for all Q in the Brillouin
zone, and then the perturbation decays and the homoge-
neous state remains stable. If an instability arises against
a sinoidal structure of wavevector Q 6= 0 at higher levels
of excitation, then γ must be equal to zero at some critical
intensity Ic, and change sign thereafter. Therefore, taking
γ = 0 in equation (21), introducing it in equations (16, 17),
neglecting the bilinear terms N e(h)

k,Q (t) and performing a
sum over k, we arrive to the equation that determines the
steady-state solutions n(Q) at the critical intensity. This
equation is given by

n(Q)ε(Q, ω) = 0, (22)

where

ε(Q, ω) = 1− V(Q)
∑
k

j1(k,Q, ω) + ij2(k,Q, ω)
j3(k,Q, ω) + ij4(k,Q, ω)

(23)

and

j1(k,Q, ω) = −1
~

(f e
k+Q − f e

k)(~ω + εh
k+Q − εh

k)

+
1
~

(fh
k+Q − fh

k)(~ω − εe
k+Q + εe

k), (24)

j2(k,Q, ω) = [(f e
k+Q−f e

k)−(fh
k+Q−fh

k)](Ae
k,Q+Ah

k,Q),
(25)

j3(k,Q, ω) =
1
~

(~ω − εe
k+Q + εe

k)(~ω + εhk+Q − εh
k),

(26)

j4(k,Q, ω) = −(~ω + εh
k+Q − εh

k)Ah
k,Q

− (~ω − εe
k+Q + εe

k)Ae
k,Q. (27)

In equations (24, 27) the populations f
e(h)
k (defined in

Eqs.(18a,18b)), after linearization of equations (16, 17),
acquire in the homogeneous state of reference a form rem-
inescent of Fermi-Dirac distributions. For a discussion of
this point see for example references [11,12].

We stress that ε(Q, ω) defined in equation (23) is the
frequency- and wavevector-dependent dielectric function
of the system, in the given nonequilibrium conditions. As
known, the dielectric function has information on all the
optical properties and elementary excitations (single- par-
ticles and collective modes) of the system [20]. The pos-
sibility of recognizing a physical meaning for the function
ε(Q, ω) is, certainly, of relevance. In Section 3 we shall
show that, on the basis of physical arguments, the succes-
sion of instabilities arising beyond the first bifurcation can
be characterized, a task that, otherwise, requires a hard
numerical work.

Equation (22) admits two types of solutions, one is
n(Q) = 0 which is the solution corresponding to the ho-
mogeneous state, and another one is n(Q) 6= 0, corre-
sponding to the non-homogeneous state, which is possible
when ε(Q, ω) = 0. Since ε(Q, ω) is a complex function (of
real arguments Q and ω) to set it equal to zero requires
that both its real (Re ε) and imaginary (Im ε) parts be
null. After introducing in equation (23) the expressions for
jl(k,Q, ω)(l = 1 to 4), as given in equations (24–27) and
going to the continuum limit in k-space (and therefore the
sum in equation (23) can be appropriately replaced by an
integral over the Brillouin zone), we can proceed to look
for the roots of the coupled set of equations Re ε(Q, ω) = 0
and Im ε(Q, ω) = 0 resorting to numerical integration
which requires some careful handling.

We consider the case of a GaAs semiconductor al-
though the results we will describe are expected to be valid
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for any direct-gap polar semiconductors (we recall that
me ∼ 0.05m0; mh ∼ 0.6m0; ε0 ∼ 10; η∞ ∼ 3.5; EG ∼
1.54 eV, at room temperature; |Pvc|2/m0EG ∼ 7.41;
QB ∼ 5 × 107 cm−1). Our calculations show that, for
ω 6= 0, there are not simultaneous roots for Re ε and
Im ε and then the instability, if it exists, is stationary
(ω = 0). Therefore we look for possible roots of the static
(but wavenumber-dependent) dielectric function ε(Q, 0).
Equation (23) tells us that ε(Q, ω) has definite parity:
Re ε is odd in ω whereas Im ε is even in ω, and then
Im ε(Q, 0) = 0, for all Q (having recognized that ε(Q, ω)
is the dielectric function of the system, its parity follows
immediately from known results on the electrodynamics
of material media [21]). Therefore, we proceed to look for
the possible roots of the real part of the static dielectric
function which is given by

ε(Q, 0) = 1− V(Q)∑
k

j1(k,Q, 0)j3(k,Q, 0) + j2(k,Q, 0)j4(k,Q, 0)
[j3(k,Q, 0)]2 + [j4(k,Q, 0)]2

· (28)

This function depends on the intensity I, the effective in-
terval of absorption ∆E, the bath temperature TB and the
doping concentration n0.

Simplified expressions for ε(Q, 0) under different
regimes of illumination were analyzed in some limiting
conditions and reported in reference [3], showing that, at
low intensity, no zero of ε(Q, 0) is possible and therefore
the homogeneous state is always stable. At high inten-
sities, the sum in equation (28) was shown to be nearly
independent of Q and a root of the real part can be ob-
tained (first bifurcation) only in the case of doped p-type
materials. We retake here the question using the full exact
expression of equation (28). For fixed values of ∆E and
TB we look for the possible roots of ε(Q, 0) in Q-space,
for different intensities I, considering intrinsic and doped
semiconductors. The numerical calculations were carried
out using parameters of GaAs but, as already said, the
results to be derived are expected to be a common char-
acteristic of all direct-gap polar semiconductors.

After a series of an in depth numerical analysis of the
static wavenumber-dependent dielectric function, in sev-
eral different conditions, two main laws appear to hold:

i) for intrinsic and n-type-doped materials no root of
ε(Q, 0) is possible and, therefore, the spatially homoge-
neous state is stable under any conditions;

ii) for p-type-doped materials the static dielectric func-
tion, ε(Q, 0), presents one root at a critical intensity Ic;
this root appears for a wavenumber Qc near the end of the
Brillouin zone.

At the critical intensity the homogeneous state be-
comes unstable against the emergence of a new structure
of the form

nc(r) = nc +
1
2

[n(Qc)eiQc.r + c.c.], (29)

where nc is the photoinjected density at Ic. The depen-
dence of the density n on the intensity I, for radiation
levels such that n ∼ 1019 cm−3, is discussed in reference

[11], and at higher intensities the system reaches optical
saturation, for n ∼ 1020 cm−3, when n becomes a constant
independent of I.

We consider a p-type GaAs sample, with p-doping,
density n0 = 6 × 1018 cm−3, bath temperature
TB = 300 K and illumination provided by an UV-
light source with Em < EG and EM = 1.7 eV (see Eq.
(1)) and hence ∆E ∼ 200 meV. Under these experimen-
tal conditions we find that the critical wavenumber is
Qc
∼= 1.32× 107 cm−1 meaning that the spatial pattern is

a sinoidal structure with wavelength λ ∼= 50 Å, which is
roughly larger than ten times the length of the elementary
crystal cell, a ∼ 4.5 Å. The critical intensity is found to
be Ic ∼= 0.85 TWcm−2. This is a very large value which,
even if available in a laboratory (maybe resorting to UV
synchrotron radiation), would produce crippling material
damage (if not destruction) in the sample. Consequently,
the phenomenon we have evidenced, even though theo-
retically possible, cannot be accomplished in bulk semi-
conductors under realistic experimental conditions. The
main reason for this fact is that the process of radiation
absorption is very inefficient in these systems.

3 Morphological instability in low-dimensional
systems

The theoretical results of the previous section, indi-
cating the possibility of complex behavior in the elec-
tron plasma, lead us to consider other type of sys-
tems where the phenomenon could be observable under
feasible laboratory conditions. This is the case of low-
dimensional systems, which show peculiar characteristics
not present in bulk matter [22]. An analysis, based on
NESOM, of the optical and dynamical properties of a
far-from-equilibrium quasi-one-dimensional electron sys-
tem is reported in reference [10]. Particular and quite
interesting systems are molecular [23] or biological [24]
polymers. Instead of using UV-light illumination these
materials can also be excited via efficient metabolic
biochemical mechanisms [25]. Moreover, biopolymers
may behave as a kind of semiconductor-like materi-
als and, in particular, are of the p-doped type [23,24].
This is a quite interesting point in view of the results
presented in Section 2 and of considerations advanced by
Szent-György (see for example Ref. [26]). Since biochem-
ical processes provide an alternative mechanism for elec-
tron excitation, accessible power levels could then lead to
the emergence of the morphological transition. For this
reason it is tempting to proceed with an analysis of the
behavior of the system beyond the first bifurcation point.
We recall that, at this first instability of the homogeneous
state a steady-state charge density wave (SSCDW) sets
in [cf Eq. (29)] but an analysis of the dielectric function
ε(Q, ω) allows us to show that when increasing the radia-
tion intensity I beyond Ic further instabilities do appear.

For I > Ic we would need to analyze ε(Q, 0) after
the new inhomogeneous state nc(r) [cf. Eq (29)] has been
stabilized in the sample. In this case, the whole set of



136 The European Physical Journal B

equations (16, 17) containing the nonlinear contributions
need to be considered and a new stability analysis of the
inhomogeneous state of reference nc(r) performed. How-
ever, the rigourous mathematical treatment of the re-
sulting equations becomes quite difficult and the analysis
needs to be simplified. In effect, by noting that the non-
linear terms in the amplitudes n(Q) contribute quadrat-
ically in ε(Q, 0) and are very small (|n(Qc)|2 � nc) for
intensities near (but larger) than Ic (see Ref. [3]), they
can be neglected in a first approximation. Thus, we can
analyze ε(Q, 0) vs. I(& Ic) taking its expression in the
homogeneous state. Such analysis shows that for any in-
tensity I higher than Ic, ε(Q, 0) presents two roots, one
at wavenumber Qm < Qc and other one at QM > Qc

(at the critical intensity Ic these three values coincide,
i.e., Qm = Qc = QM) (see insert in Fig. 1). For a given
(fixed) intensity I ′ > Ic, the dielectric function ε(Q, 0) is
negative in the corresponding interval Q′m < Q < Q′M,
which defines a portion of the Brillouin zone of unsta-
ble modes. This result allows us to characterize, on the
basis of physical arguments, the instability and the new
structures emerging out of a succession of critical points:
in effect, the quantity ε(Q, 0), being the static dielectric
function of the system, must always be a positive real
number, as should also be the refractive index which is
the square root of ε (we recall that the imaginary part
of ε(Q, ω) is null for ω = 0). Therefore, null or negative
values of the static dielectric function point an unphysical
behavior of the system for intensities larger than Ic. As we
have seen, for a pumping intensity Ic, the static dielectric
function becomes zero for Q = Qc and, for all I in the
interval Ic < I < I ′, it becomes negative for wavenumbers
Q in the interval Q′m < Q < Q′M. This implies that, for in-
creasing values of I beyond Ic, ε(Q, 0) goes through zeroes
for all wavenumbers in such interval. Therefore, for those
values of the wavenumber, the so-called dielectric response
ε−1(Q, 0) becomes infinite, indicating an instability of the
charge density at such wavenumbers, in complete analogy
with the criteria of phase transitions in equilibrium (see
Appendix A).

This analysis indicates that beyond Ic, when the den-
sity is nc(r) of equation (29), as the intensity increases a
growing number of stable modes contributes to compose
the spatial charge density leading, at I ′(> Ic), to a stable
structure of the form

n(r) ∼= ns +
∑

Q′m≤Q≤Q′M

n(Q)eiQ.r. (30)

We recall that this is an approximation, since the exact ex-
pression would not be linear in the amplitudes as it is the
simple superposition in this equation (30). However, once
conditions leading to small amplitudes n(Q) are present,
equation (30) would constitute an acceptable approxima-
tion. Therefore, with increasing intensity I above Ic, we
may expect the emergence of a charge density wave com-
posed of a large number of normal modes.

At this point an important question needs to be con-
sidered, namely, that of imposing boundary conditions.
In fact, taking into account that the sample is finite in

size, if L is its length in the direction of Q, boundary
conditions require that the permissible wavenumbers are
Q

(l)
m = (lm−l+1)π/L and Q(l)

M = (lM+l−1)π/L, where lm
and lM are the integers corresponding to the wavenumbers
at the first instability, and l are integers (l = 1, 2, 3 . . . ).
Moreover, there are upper and lower limiting values,
i.e., Q(l) must be in the intervals such that 1 ≤ l ≤ lm
(for Q(l)

m ) and 1 ≤ l ≤ lB (for Q(l)
M ) with lB being the

maximum integer value for which Q
(lB)
M < QB. These

wavenumbers have associated characteristic wavelengths
that are said to be extrinsic, in the sense that they are
dependent on the size (geometry) of the system [27,28].

Figure 1 shows the linear stability diagram indicating
the succession of bifurcations of the homogeneous steady
state. This is a diagram which resembles, among others,
the case of the so-called bimolecular model (or Brussella-
tor), the Bènard problem and, fittingly, the Turing insta-
bility against morphological ordering in reaction-diffusion
systems. In fact, the succession of critical points indicating
the instabilities of the homogeneous state against spatial
waves with wavenumbers Q(l)

m and Q(l)
M is quite analogous

to the case of Bènard and Turing instabilities [27,28].
These characteristics of a steady-state charge den-

sity wave with a complex structure (containing the linear
superposition of modes as in Eq.(30) plus nonlinear cor-
rections) lead us to the prediction of a particular asymp-
totic phenomenon. It consists in that the growing num-
ber of modes, contributing to the emergence of the
complex spatial ordering, would lead to the presence of
an excess of modes in the system in such a way that it
would show what may resemble chaotic behavior. Let us
call this phenomenon turbulent-like chaos, following Lan-
dau’s [29] and Prigogine’s [30] ideas who have discussed
turbulence and chemical chaos, respectively, in terms of an
overexcess of modes emerging in the system. We may say
that, with increasing pumping power, a particular route
to this chaotic-like state arises, which we term as Landau-
Prigogine route to turbulent-like chaos, qualitatively de-
scribed in Figure 2. This figure has been adapted from one
in reference [30] (p. 168), but it must be noticed that here
it is referring to local variations in space of the steady-
state carriers’ plasma. Moreover, pursuing the analogy
with the Belousov-Zhabotinskii reaction it may be conjec-
tured that, with further increasing intensity of the pump-
ing source, new levels of complex behavior could arise in
the steady-state spatial distribution of the carriers’ charge
density. Possible steps would be regimes of chaotic be-
havior accompanied with mixed-mode oscillations, chaotic
and partially periodic relaxation oscillations, etc.

4 Concluding remarks

We have reported the possible emergence of spatial or-
der in a carrier plasma when under the action of an
external source of energy. We have shown that the
electron system in semiconductors under continuous il-
lumination with UV-light can display an instability
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Fig. 1. Linear stability diagram (see main text); the insert shows the behavior of ε(Q, 0) around Qc for the critical intensity Ic
and for I > Ic.

Fig. 2. Schematic qualitative description of the route to the so-called turbulent-like chaos described in the text.
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of the homogeneous state against the formation of
a steady-state spatial charge-density-wave structure.
We have based our analysis on the mechanical-
statistical formalism of NESOM, which allowed us
to derive the transport equation [cf. Eqs.(16, 17)]
of the electron density n(r, t) defined in equation (2). We
showed numerically that the instability of the homoge-
neous state arises only in doped p-type materials (for in-
trinsic and n-doped samples the homogeneous state is sta-
ble under any intensity of the pumping source). Moreover,
the critical wavenumber Qc that characterize the spatial
pattern at the first bifurcation is at near the end of the
Brillouin zone. However, the critical intensity of the pump-
ing source necessary for the phenomenon to follow was
found to be so high that, even if available in a laboratory,
it would produce sample damage. The high value of Ic
required for the phenomenon to arise is a consequence of
the low efficiency of the radiation absorption mechanism
by electrons: the contribution associated to the interac-
tion between electrons and the external radiation in equa-
tion (19) is smaller than the one corresponding to pair
recombination, except at high intensities when only the
bifurcation can follow.

Nevertheless, as discussed in Section 3, materials with
low dimensionality (quasi-one-dimensional electron sys-
tems, for instance) as molecular and biological polymers,
which can also be excited by chemical interaction with
the surrounding medium, may display the morphological
transition and the chaotic-like behavior we have described.
The application of NESOM to the study of nonequilibrium
electron system in quantum-wires have been reported in
reference [10], where a derivation and a detailed analysis
of the dielectric function as well as the instability of col-
lective modes (plasmons) was carried out. In the case of
biopolymers, the efficient mechanism in action resides in
the so-called dark biological processes (chemical reactions
involving enzyme catalysis, in particular, the hydrolysis
of ATP). Therefore, since excited states in these systems
can be generated via two different mechanisms (electro-
magnetic radiation and chemical reaction), lower radiation
levels could produce the instability without crippling ma-
terial damage. This is a quite interesting result that goes in
the direction of the ideas advanced by Szent-György, that
mobile electrons have an enormous relevance in biosys-
tems, playing a fundamental role in the working of life,
and that the resulting carrier conductivity in extended
proteins molecules may result in the building of higher
structures [26] (as the situation we have described in this
paper).

We have shown on the basis of the analysis of the static
wavenumber-dependent dielectric function, that with in-
creasing power of the pumping source beyond the critical
point (first bifurcation), more and more subharmonics of
the fundamental mode contribute to the construction of
the static charge density wave. As the pumping power in-
creases the number of these components grows in such
a way that the system could display chaotic behavior,
phenomenon that may be called turbulent-like chaos, in
analogy with the old Landau’s theory of turbulence, who

discussed the possible emergence of turbulence in terms of
an excess of modes emerging in the fluid.

One of us (SAH) is grateful to Prof. Nelson Duran of the In-
stitute of Chemistry at Unicamp, for helpful discussions on
the subject of reference [25]. We acknowledge financial sup-
port provided to our Group in different opportunities by the
São Paulo State Research Foundation (FAPESP), the National
Research Council (CNPq), Unicamp Foundation (FAEP), the
Ministry of Planning (Finep), IBM-Brasil, and the John Simon
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Appendix A: Characterization of bifurcation
points

Determination of critical points of instability in nonlin-
ear systems is, in general, a difficult task. The mathe-
matical approach is based, as known, on the use of Lya-
pounov’s theory. In nonlinear nonequilibrium thermody-
namics Glansdorff-Prigogine (in)stability criterion, based
on the change of sign of the quantity called excess entropy
production function [27], is available. We recall that be-
cause of Prigogine’s theorem of minimum entopy produc-
tion in the strictly linear (Onsagerian) regime, the dis-
organized state (thermal chaos) is always stable. In the
nonlinear regime its instability can follow when the sys-
tem is driven by external exciting sources and Onsager’s
symmetry laws are no longer valid (these results can be
generalized in the scope of Informational Statistical Ther-
modynamics, as shown in the third of Ref. [14]).

In the case we have considered in the main text, we can
use an alternative approach based on response function
theory, in close analogy with the case of phase transitions
in equilibrium. In the latter case the critical (or transi-
tion) point is characterized by a singularity in a particular
physical property as, for example, an infinite value of the
specific heat in transitions involving structural changes,
an infinite value of the magnetic susceptibility in a ferro-
magnetic transition, etc. Moreover, characteristics of the
transition can also be derived: in the first case just men-
tioned, since ∆Q = C∆T , by definition of the specific heat
C, where ∆Q is the heat provided and ∆T the change in
temperature, at the transition point as C goes to infin-
ity ∆T = 0 and the temperature remains constant as the
transition proceeds; in the second case, the magnetic en-
ergy being H · B/2 = µ0|H|2(1 + χM )/2, at the critical
point the magnetic susceptibility χM goes to infinity and
then H = 0, implying in that a spontaneous ferromagnetic
magnetization M 6= 0 must emerge.

Consider now the case of nonequilibrium systems ar-
bitrarily away from equilibrium, as the one we have con-
sidered in the main text. In this case we can introduce
ideas having a close analogy with the case of phase transi-
tions, however keeping in mind that the role of phases
in equilibrium is now played by stationary dissipative
structures. For the carriers’ system described in this pa-
per, since ε(Q, 0) is the static wavenumber-dependent
dielectric function and the electric energy is given by
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E(Q) ·D(Q)/2 = ε−1(Q, 0)|D(Q)|2/2, at the point where
ε−1 goes to infinity, that is when ε goes to zero, D must
also go to zero, implying in the emergence of a spontaneous
and space-dependent electric polarization P 6= 0, namely,
the charge density wave we have evidenced. In this way,
this is completely analogous to the case of electrical po-
larizable phase transitions in equilibrium, with Q = 0 for
ferroelectrics; |Q| = π/a for antiferroelectrics (a is the
lattice parameter in a given direction) and arbitrary Q for
helical-electric materials.
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